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Abstract
A new nonlinear optical conductivity formula for a system of electrons
interacting with phonons was derived using a reduction identity and a state-
dependent projection technique introduced by the authors. The results include
a general formula for the nonlinear optical conductivity of the general rank and
the linear, first-order nonlinear and second-order nonlinear conductivity are
calculated in terms of the linewidth. The linewidth term includes the electron
and phonon distribution functions properly. Therefore, it is possible to explain
the phonon emission and absorption in all electron transition processes in an
organized manner.

PACS numbers: 42.65.−k, 72.10.Bg, 72.20.Dp

1. Introduction

The transport behavior of electrons in semiconductors is characterized by scattering
mechanisms, including electron–electron, electron–phonon and electron–impurity
interactions. However, the electron–electron and electron–impurity interactions may be
neglected if the number density of electrons is very low, as in ordinary semiconductors,
and the temperature is in the middle range (50–200 K). Hence, the dominant scattering
mechanism is an electron–phonon interaction, which may be dealt with as a perturbation.
Therefore, a study of the optical transitions in electron systems is important for determining
the electronic structures of solids because the absorption lineshapes are quite sensitive to the
type of scattering mechanisms affecting the behavior of carriers. However, most theories have
been limited to linear scheme [1–15].
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The field of nonlinear optical phenomena [16–39] was initiated by the experimental work
by Franken et al [17] on optical second-harmonic generation and the theoretical work by
Bloembergen et al [18, 19] on optical wave mixing. Although there are many approaches
to these phenomena, such as the time-dependent perturbation theory [21, 24, 25], density-
functional theory [30], Boltzmann equation method [26–28, 31], K-operator technique [29]
and two-temperature model [16, 22, 32], we have been interested in the quantum-statistical
projection technique [12–14, 33]. In this method, the resolvent factor contained in the
conductivity tensor was expanded using projectors, yielding quite many useful formulae.
Note that quantum transport theory is a very powerful tool for examining the microscopic
scattering phenomena of the electron systems.

There are two types of projection techniques: the single-electron projection technique
[1–6, 15] and the many-electron projection technique [7, 9, 12–14, 33]. The latter is more
general than the former because the many-body formalism in solids generally cannot be
reduced to a single-body one. The many-body projectors are classified into two categories:
the first being state independent [7, 9, 12] and the second being state dependent [13, 14]. The
state-independent method is applicable only to cases where the spacing between the nearest
levels is constant, such as cyclotron resonance phenomena. However, it is unsuitable to a
system with nonuniform energy separation, such as a quantum square well. Therefore, the
state-dependent projection method is less limited than the state-independent one.

This study applied the state-dependent projection method and the general form of the
reduction identity, introduced by the authors [13], to derive rigorous explicit expressions for
the linear, first-order nonlinear and second-order nonlinear optical conductivity tensors for an
electron system interacting with the phonons. As the higher order calculation is more general,
how the reduction identity is utilized in this problem will be shown in detail only in section 6,
in which the second-order nonlinear part is dealt with.

2. Reduction identity

We start with the following equation for the arbitrary operators X and A:

TR{ρ(H)[LX,A]} = TR{ρ(H)(HXA − XHA − AHX + AXH)}, (2.1)

where TR means the many-body trace with the basis states |�〉 = (
a+

α

)nα
(
a+

β

)nβ · · · |�0〉,
nα, nβ, . . . being the number operators for the occupied states α, β, . . . , |�0〉 is the vacuum
state, a+

α denotes the creation operator for an electron in the |α〉 state, ρ(H) is the density
operator, L is the Liouville operator corresponding the Hamiltonian of the system, H, which
is defined as LX ≡ [H,X] for an arbitrary operator, X, and [A,B] is the commutator.
Considering [H, ρ(H)] = 0 and TR(ABC) = TR(BCA) for the first and fourth terms on the
right-hand side, the zeroth-order reduction identity can be obtained as

TR{ρ(H)[LX,A]} = TR{ρ(H)(XAH − XHA + AHX − HAX)}
= −TR{ρ(H)[X,LA]}, (2.2)

which is useful because L and X are separated (see the following sections). Similarly, for
arbitrary operators A and B,

TR{ρ(H)[[LX,A], B]} = TR{ρ(H)(XABH − BHXA − AHXB + BAHX

−XHAB + BXHA + AXHB − HBAX)}, (2.3)

where [H, ρ(H)] = 0 and TR(ABC) = TR(BCA) were considered for the first and
eighth terms on the right-hand side, respectively. The first-order reduction identity can be
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obtained by adding TR{ρ(H)(−XAHB +HBXA+HAXB −BHAX +XAHB −HBXA−
HAXB + BHAX)}, which is null, to equation (2.3) and rearranging the terms as follows:

TR{ρ(H)[[LX,A], B]} = −TR{ρ(H)[[X,LA], B]} − TR{ρ(H)[[X,A], LB]}. (2.4)

Therefore, the general form of the reduction identity can be obtained as (appendix A)

TR{ρ(H)[· · · [[LX,A1], A2], · · · , An]} = −TR{ρ(H)[· · · [[X,LA1], A2], · · · , An]}
− TR{ρ(H)[· · · [[X,A1], LA2], · · · , An]}
· · · − TR{ρ(H)[· · · [[X,A1], A2], · · · , LAn]}. (2.5)

Hereafter, this identity is called the KC reduction identity to be discerned from the other forms
and will be used to derive the nonlinear optical conductivity.

3. Ensemble average of the current density operator

This paper considers the electron–phonon system, in which the total Hamiltonian H(t) and
the corresponding Liouiville operator L(t) can be split into two parts, respectively, as follows:

H(t) = Heq + Hint(t), (3.1)

L(t) = Leq + Lint(t). (3.2)

Here Heq is the Hamiltonian of electrons interacting with phonons in thermodynamic
equilibrium, which is given by

Heq = Hd + V =
∑

α

Eαa+
αaα +

∑
q

h̄ωqb
+
qbq +

∑
q

∑
α,μ

Cα,μ(q)a+
αaμ

(
bq + b+

−q

)
, (3.3)

where a+
α(aα) and b+

q (bq) denote the creation (annihilation) operator for an electron in the |α〉
state with energy Eα and the creation (annihilation) operator for a phonon in the |q〉 state,
respectively; |q〉 ≡ |q, s〉; q is the phonon wave vector and s is the polarization index;
h̄ωq is the phonon energy and Cα,μ(q) is the electron–phonon interaction matrix element. In
equation (3.1), the interaction term with the time-dependent external electric field of amplitude
Fj and angular frequency ω, Hint(t), is given by

Hint(t) = e
∑

j=1,2,3

∑
α,β

(rj )αβa+
αaβFj exp(iωt) + c.c., (3.4)

where r1, r2 and r3 denote the x, y and z components of the electron position vectors,
respectively, (X)αβ ≡ 〈α|X|β〉 for an arbitrary operator X, and c.c. means the complex
conjugate.

On the other hand, the total density operator ρ(t) follows the Liouville equation as follows:

ih̄
∂ρ(t)

∂t
= L(t)ρ(t). (3.5)

A formula for the nonlinear optical conductivity can be derived by expanding it as
ρ(t) = ρeq + ρint(t), where ρeq ≡ ρ(Heq) is the density operator for a system in thermal
equilibrium and ρint(t) is the perturbed term by the time-dependent external field. Inserting
ρ(t) into equation (3.5), we obtain (see [33] for details)

ρint(t) =
∞∑

n=1

1

(ih̄)n

∫ ∞

0
dt1

∫ ∞

0
dt2 · · ·

∫ ∞

0
dtn exp(−iLeqt1/h̄)Lint(t − t1) exp(−iLeqt2/h̄)

× Lint(t − t1 − t2) · · · exp(−iLeqtn/h̄)Lint(t − t1 − · · · − tn)ρeq

≡ ρ(1)(t) + ρ(2)(t) + · · · + ρ(∞)(t), (3.6)

where ρ(n)(t) involves Lint(t) n times.
3
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Using equation (3.6), the ensemble average of the ith component of the current density
operator J is given by

〈Ji〉ens =
∞∑

n=1

〈J (n)
i 〉ens =

∞∑
n=1

TR{ρ(n)(t)Ji}, (3.7)

where i ≡ x, y, z and the many-electron current operator Ji can be written in terms of the
single-electron current operator jz = (ieh̄/mc)∂/∂z as Ji = ∑

αβ(ji)αβa+
αaβ , where mc is the

effective mass of the electron.

4. Linear optical conductivity

The first-order term of 〈Ji〉ens in equation (3.7) is given by

〈J (1)
i 〉ens ≡

∑
j

σij (ω)Fj (ω), (4.1)

where the linear term of the optical conductivity tensor for the incident wave of a frequency
ω, σij (ω), is defined as

σij (ω) ≡ e lim
s→0+

∑
δ1,δ2

∑
α1,α2

(ji)δ1δ2(rj )α1,α2A
(0)δ1δ2
α1α2

(ω̄). (4.2)

Here,

A(0)δ1δ2
α1α2

(ω̄) ≡ TR

{
ρeq

[
K(ω̄)a+

δ1
aδ2 , a

+
α1

aα2

]}
, (4.3)

where ω̄ ≡ ω + is(s → 0+) and K(ω) ≡ (h̄ω̄ − Leq)
−1.

In order to calculate A(0)δ1,δ2
α1,α2

(ω̄), the zeroth state-dependent projectors, P0 and Q0, for an
arbitrary operator, X, can be defined as follows:

P0X ≡ 〈X〉α〈
a+

δ1
aδ2

〉
α

a+
δ1
aδ2 , Q0 ≡ 1 − P0, (4.4)

where

〈X〉α ≡ TR

{
ρeq

[
X, a+

α1
aα2

]}
. (4.5)

In equations (4.4) and (4.5), the projection operators are state dependent, i.e. these operators
project an arbitrary operator, X, into the operator a+

δ1
aδ2 , which depends on the states δ1 and

δ2. On the other hand, state-independent projection operators were used in a previous paper
[33], i.e. those operators project X into the state-independent current density operator, Jk.

The previous result [33] is applicable only to the case in which LdJk = c-number × Jk

is satisfied or Q0LdJk = 0 where Jk is the many-electron current operator. The cyclotron
phenomenon belongs to this category because for the current operator J± = Jx ± iJy , we
have LdJ+ = h̄ωcJ+, where ωc is the resonance frequency. In this paper, however, the above
criterion is always satisfied because Lda

+
αaδ = (Eα −Eδ)a

+
αaδ or QLda

+
αaδ = 0, so the present

method is more general and the condition that Q0LdJk = 0 in [33] has nothing to do with the
present result. Since the derivation of higher order terms is more general, we will show the
detailed procedure of utilizing the reduction identity in section 6 only, in which the second-
order nonlinear term is calculated. Thus, here we will not show the detailed calculations in
order to save space.

In equation (4.3), applying the identity 1 = P0 +Q0 on the right-hand side of the Liouville
operator, Leq, in K(ω) as Leq = Leq(P0 + Q0), considering Leq as Leq = Ld + Lv , where Ld

4
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and Lv are the Liouville operators corresponding to the Hamiltonian Hd (diagonal part) and V
(nondiagonal part), respectively, and using the identity

1

A − B
= 1

A
− 1

A
B

1

A − B
, (4.6)

we obtain, after systematic calculations as in [33],

σij (ω) = e
∑
δ1,δ2

(ji)δ1δ2(rj )δ2δ1

(
fδ1 − fδ2

)
h̄ω̄ − Eδ1δ2 − 


(0)
δ2δ1

(ω̄)
, (4.7)

where fi is the Fermi distribution function for an electron with energy Ei. In equation (4.7),
the real parts of the self-energy (Lamb frequency shift) are not included because we consider
a very weak scattering. Note that those parts are quite small in comparison with Eδ1 − Eδ2 in
the quantum limit. In equation (4.7), the zeroth-order linewidth (or damping term), 


(0)
δ1δ2

, is
given by the following:



(0
δ1δ2

(ω̄)
(
fδ1 − fδ2

) =
∑

q

∑
λ

[∣∣Cδ2λ(q)
∣∣2

G
(+)
δ1λ

(ω̄){W+(δ1, λ) − W−(λ, δ1)}

− ∣∣Cδ2λ(q)
∣∣2

G
(−)
δ1λ

(ω̄){W+(λ, δ1) − W−(δ1, λ)}
+

∣∣Cλδ1(q)
∣∣2

G
(+)
λδ2

(ω̄){W+(λ, δ2) − W−(δ2, λ)}
− ∣∣Cλδ1(q)

∣∣2
G

(−)
λδ2

(ω̄){W+(δ2, λ) − W−(λ, δ2)}
]
. (4.8)

Here

G
(±)
αβ (ω̄) ≡ (h̄ω̄ − Eαβ ± h̄ωq)

−1 (4.9)

and

W±(α, β) ≡ (Nq + 1/2 ± 1/2)fα(1 − fβ) (4.10)

where Nq is the Planck distribution function for a phonon with energy h̄ωq . The physical
meaning of equation (4.8) is clear. For example, the first term represents the transition of the
electron from states δ1 to λ with phonon emission. Here 1 + Nq is the condition for phonon
emission, and fδ1(1−fλ) is the condition for the transition δ1 → λ. The denominator enforces
energy conservation in the transition, i.e. Eδ1 = Eλ + h̄ωq + h̄ω̄. The other seven terms in
equation (4.8) can be explained in a similar manner. The linear part given by equation (4.8)
has been reported to give a good interpretation of the intraband transition in a two-dimensional
electron system [14].

According to the Pauli exclusion principle, the population of electrons (fermions) and
phonons (bobons) should appear independently. Thus, the Fermi functions should be
multiplied by the Planck distribution functions in the formalism. Some other results [7, 9, 23]
with a sum of two functions such as (Nq + 1/2 ± 1/2 ∓ fγ ) fail to meet this criterion. This
problem can be avoided with proper use of the reduction identity.

5. First-order nonlinear optical conductivity

To derive the first-order nonlinear optical conductivity formula, we consider the second-order
term of 〈Ji〉ens in equation (3.7) given by

〈
J

(2)
i

〉
ens ≡

∑
j,k

σijk(ω12)Fj (ω1)Fk(ω2), (5.1)

5
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where the first-order nonlinear optical conductivity tensor for the incident waves of frequencies
ω1 and ω2, σijk(ω1, ω2), is defined as

σijk(ω12) ≡ e2 lim
s→0+

∑
δ1,δ2

∑
α1,α2

∑
β1,β2

(ji)δ1δ2(rj )α1α2(rk)β1β2A
(1)δ1δ2
α1α2β1β2

(ω̄12). (5.2)

Here

A
(1)δ1δ2
α1α2β1β2

(ω̄12) ≡ TR

{
ρeq

[
K(ω1)

[
K(ω12)a

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]}
, (5.3)

where ω̄i ≡ ωi + is and ω12 ≡ ω1 + ω2.
Equation (5.3) is calculated by defining the first state-dependent projectors, P1 and Q1,

for an arbitrary operator, X, as follows:

P1X ≡ 〈X〉αβ〈
a+

δ1
aδ2

〉
αβ

a+
δ1
aδ2 , Q1 ≡ 1 − P1, (5.4)

where

〈X〉αβ ≡ TR

{
ρeq

[
K(ω1)[X, a+

α1
aα2

]
, a+

β1
aβ2

]}
. (5.5)

The present projection method for the first-order nonlinear optical conductivity is more
general than that of [33] by the same reason as in the linear case. In equation (5.3), applying
the identity 1 = P1 + Q1 on the right-hand side of the Liouville operator Leq in K(ω̄12) as
(h̄ω̄12 − Leq)

−1 = (h̄ω̄12 − LeqP1 − LeqQ1)
−1 and using equation (4.6), we obtain, after

systematic calculations as in [33],

A
(0)δ1δ2
α1α2β1β2

(ω̄12) = (fδ1 − fα2)δδ1β2δα2β1

h̄ω̄1 − Eδ1α2 − 

(0)
δ1α2

(ω̄1)

δδ2α1

h̄ω̄12 − Eδ1δ2 − 

(11)
α2δ1δ2

(ω̄12)

− (fα1 − fδ2)δδ2β1δα1β2

h̄ω̄1 − Eα1δ2 − 

(0)
α1δ2

(ω̄1)

δδ1α2

h̄ω̄12 − Eδ1δ2 − 

(12)
α1δ1δ2

(ω̄12)
, (5.6)

where



(11)
α2δ1δ2

(ω̄12)(fα2 − fδ1) ≡ V
(11)
α1α2β1β2

(δ1δ2; ω̄12)(fα2 − fδ1)

=
∑

q

∑
λ

[∣∣Cλδ1(q)
∣∣2

G
(+)
λα2

(ω̄1){W+(λ, α2) − W−(α2, λ)}

− ∣∣Cλδ1(q)
∣∣2

G
(−)
λα2

(ω̄1){W+(α2, λ) − W−(λ, α2)}
+

∣∣Cδ2λ(q)
∣∣2

G
(+)
δ1λ

(ω̄1){W+(δ2, λ) − W−(λ, δ2) − W+(λ, δ2)

+ W−(δ2, λ)} − |Cδ2λ(q)|2G(−)
δ1λ

(ω̄1){W+(λ, δ1)

− W−(δ1, λ) − W+(δ1, λ) + W+(λ, δ1)}
]
, (5.7)



(12)
α1δ1δ2

(ω̄12)
(
fα1 − fδ2

) ≡ V
(12)
α1α2β1β2

(δ1δ2; ω̄12)(fα1 − fδ2)

=
∑

q

∑
λ

[∣∣Cδ2λ(q)
∣∣2

G
(+)
α1λ

(ω̄1){W+(α1, λ) − W−(λ, α1)}

− ∣∣Cδ2λ(q)
∣∣2

G
(−)
α1λ

(ω̄1){W+(λ, α1) − W−(α1, λ)}
+

∣∣Cλδ1(q)
∣∣2

G
(+)
λδ2

(ω̄1){W+(λ, δ2) − W−(δ2, λ) − W+(λ, α1)

+ W−(α1, λ)} − |Cλδ1(q)|2G(−)
λδ2

(ω̄1){W+(δ2, λ) − W−(λ, δ2)

− W+(α1, λ) + W−(λ, α1)}
]
. (5.8)

6
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For the detailed calculations, see section 6 in which the second nonlinear part is dealt with. In
equations (5.7) and (5.8), the results near the resonance points, h̄ω12 ≈ Eβ2β1 , were considered,
and we have ignored the terms including Cαα(q) and (h̄ω±h̄ωq)

−1 because we are interested in
the resonance phenomena for the electron system interacting with phonons. The present results
(equations (5.6)–(5.8)) are similar to those reported by Suzuki and Ashikawa [29]. However,
the present results are different because they include the electron and phonon distribution
functions differently. Note that the result given in [29] includes the sum of the two distribution
functions. Therefore, the present results can offer a more reasonable interpretation, such as in
the linear part.

6. Second-order nonlinear optical conductivity

The second-order nonlinear optical conductivity is derived in this section. For that purpose,
we consider the third-order term of 〈Ji〉ens in equation (3.7), which is given by〈

J
(3)
i

〉
ens ≡

∑
j,k,l

σijkl(ω123)Fj (ω1)Fk(ω2)Fl(ω3). (6.1)

Here the second-order nonlinear optical conductivity tensor for the incident waves of
frequencies ω1, ω2 and ω3, σijkl(ω1, ω2, ω3), is defined as follows:

σijkl(ω123) ≡ e3 lim
s→0+

∑
δ1,δ2

∑
α1,α2

∑
β1,β2

∑
γ1,γ2

(ji)δ1δ2(rj )α1α2(rk)β1β2(rl)γ1γ2A
(2)(ω̄123), (6.2)

where ω123 ≡ ω1 + ω2 + ω3 and

A(2)(ω̄123) ≡ TR

{
ρeq

[
K(ω1)

[
K(ω12)

[
K(ω123)a

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
. (6.3)

In order to calculate equation (6.3), the second state-dependent projectors P2 and Q2 for an
arbitrary operator X are defined as follows:

P2X ≡ 〈X〉αβγ〈
a+

δ1
aδ2

〉
αβγ

a+
δ1
aδ2 , Q2 ≡ 1 − P2, (6.4)

where

〈X〉αβγ ≡ TR

{
ρeq

[
K(ω1)

[
K(ω12)

[
X, a+

α1
aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
. (6.5)

Applying the identity 1 = P2 + Q2 on the right-hand side of the Liouville operator Leq in
equation (6.3) as (h̄ω̄123 − Leq)

−1 = (h̄ω̄123 − LeqP2 − LeqQ2)
−1 and using equation (4.6),

we obtain

A(2)(ω̄123) =
〈
a+

δ1
aδ2

〉
αβγ

h̄ω̄123 − Eδ1δ2 − B2(ω̄123)
, (6.6)

where

B2(ω̄123) ≡ h̄ω̄123〈
a+

δ1
aδ2

〉
αβγ

〈
K(2)(ω̄123)Lva

+
δ1
aδ2

〉
αβγ

. (6.7)

In equations (6.6) and (6.7),
〈
a+

δ1
aδ2

〉
αβγ

can be calculated as follows:
〈
a+

δ1
aδ2

〉
αβγ

= A
(0)δ1α2
β1β2γ1γ2

(ω̄12)δδ2α1 − A
(0)α1δ2
β1β2γ1γ2

(ω̄12)δδ1α2 . (6.8)

Equation (6.7) is calculated further by applying equation (4.6) to (h̄ω̄123 − LeqQ2)
−1 in

K(2)(ω̄123) with A ≡ h̄ω̄123 and B ≡ LeqQ2, having

B2(ω̄123)
〈
a+

δ1
aδ2

〉
αβγ

= D2(ω̄123) + E2(ω̄123), (6.9)

7
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where

D2(ω̄12) ≡ TR

{
ρeq

[
K(ω̄1)

[
K(ω̄12)

[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
, (6.10)

E2(ω̄123) ≡ TR

{
ρeq

[
K(ω̄1)

[
K(ω̄12)

[
LeqQ2K

(2)(ω̄123)Lva
+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
.

(6.11)

Therefore, after some systematic calculations, we obtain (appendix B)

B2(ω̄123)
〈
a+

δ1
aδ2

〉
αβγ

= −V21/(h̄ω̄1 + Eγ1γ2) − V22 − V23

h̄ω̄12 + Eβ1β2 + Eγ1γ2

− V24 − V25 − V26, (6.12)

where

V21 ≡ TR

{
ρeq

[
K(d)(ω̄1)

[[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, Lva

+
γ1

aγ2

]}
, (6.13)

V22 ≡ TR

{
ρeq

[
K(d)(ω̄1)

[
K(d)(ω̄12)

[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, Lva

+
β1

aβ2

]
, a+

γ1
aγ2

]}
, (6.14)

V23 ≡ TR

{
ρeq

[
K(d)(ω̄1)

[
K(d)(ω̄12)

[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, Lva

+
γ1

aγ2

]}
, (6.15)

V24 ≡ TR

{
ρeq

[
K(d)(ω̄1)

[
K(d)(ω̄12)

[
K(d)(ω̄123)Lva

+
δ1
aδ2 , Lva

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
, (6.16)

V25 ≡ TR

{
ρeq

[
K(d)(ω̄1)

[
K(d)(ω̄12)

[
K(d)(ω̄123)Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, Lva

+
β1

aβ2

]
, a+

γ1
aγ2

]}
, (6.17)

V26 ≡ TR

{
ρ
[
K(d)(ω̄1)

[
K(d)(ω̄12)

[
K(d)(ω̄123)Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, Lva

+
γ1

aγ2

]}
, (6.18)

which are all calculable forms. Inserting equations (6.8) and (6.12)–(6.18) into equation (6.6)
and considering equation (5.6) gives

A(2)(ω̄123)

= (fδ1 − fβ2)δδ1γ2δβ2γ1

h̄ω̄1 − Eδ1β2 − 

(0)
δ1β2

(ω̄1)

δα2β1

h̄ω̄12 − Eδ1α2 − 

(11)
β2δ1α2

(ω̄12)

δδ2α1

h̄ω̄123 − Eδ1δ2 − 

(21)
βδ1δ2

(ω̄123)

− (fβ1 − fα2)δα2γ1δβ1γ2

h̄ω̄1 − Eβ1α2 − 

(0)
β1α2

(ω̄1)

δδ1β2

h̄ω̄12 − Eδ1α2 − 

(12)
β1δ1α2

(ω̄12)

δδ2α1

h̄ω̄123 − Eδ1δ2 − 

(22)
βα2δ1δ2

(ω̄123)

− (fα1 − fβ2)δα1γ2δβ2γ1

h̄ω̄1 − Eα1β2 − 

(0)
α1β2

(ω̄1)

δδ2β1

h̄ω̄12 − Eα1δ2 − 

(11)
β2α1δ2

(ω̄12)

δδ1α2

h̄ω̄123 − Eδ1δ2 − 

(23)
α1β2δ1δ2

(ω̄123)

+
(fβ1 − fδ2)δδ2γ1δβ1γ2

h̄ω̄1 − Eβ1δ2 − 

(0)
β1δ2

(ω̄1)

δα1β2

h̄ω̄12 − Eα1δ2 − 

(12)
β1α1δ2

(ω̄12)

δδ1α2

h̄ω̄123 − Eδ1δ2 − 

(24)
β1δ1δ2

(ω̄123)
.

(6.19)

Here



(21)
β2δ1δ2

(ω̄123)
(
fβ2 − fδ1

) =
∑

q

∑
λ

[∣∣Cλ,δ1(q)
∣∣2

G
(+)
λβ2

(ω̄1){W+(λ, β2) − W−(β2, λ)}

− ∣∣Cλ,δ1(q)
∣∣2

G
(−)
λβ2

(ω̄1){W+(β2, λ) − W−(λ, β2)}
+

∣∣Cδ2,λ(q)
∣∣2

G
(+)
δ1λ

(ω̄123){W+(β2, λ) − W−(λ, β2) − W+(δ1, λ) + W−(λ, δ1)}
− ∣∣Cδ2,λ(q)

∣∣2
G

(−)
δ1λ

(ω̄123){W+(λ, β2) − W−(β2, λ) − W+(λ, δ2) + W−(δ1, λ)}],
(6.20)
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(22)
β1α2δ1δ2

(ω̄123)
(
fα2 − fβ1

)
=

∑
q

∑
λ

[∣∣Cλ,δ1(q)
∣∣2

G
(+)
λδ2

(ω̄12){W+(λ, β1) − W−(β1, λ) − W+(λ, γ1)

+ W−(γ1, λ)} − ∣∣Cλ,δ1(q)
∣∣2

G
(−)
λδ2

(ω̄12){W+(β1, λ) − W−(λ, β1) − W+(γ1, λ)

+ W−(λ, γ1)} +
∣∣Cδ2,λ(q)

∣∣2
G

(+)
δ1λ

(ω̄123){W+(β1, λ) − W−(λ, β1) − W+(γ1, λ)

+ W−(λ, γ1)} − ∣∣Cδ2,λ(q)
∣∣2

G
(−)
δ1λ

(ω̄123){W+(λ, β1) − W−(β1, λ)

−W+(λ, γ1) + W−(γ1, λ)}], (6.21)



(23)
α1β2δ1δ2

(ω̄123)
(
fβ2 − fα1

)
=

∑
q

∑
λ

[∣∣Cδ2,λ(q)
∣∣2

G
(+)
δ1λ

(ω̄12){W+(γ1, λ) − W−(λ, γ1) − W+(α1, λ)

+ W−(λ, α1)} − ∣∣Cδ2,λ(q)
∣∣2

G
(−)
δ1λ

(ω̄12){W+(λ, γ1) − W−(γ1, λ) − W+(λ, α1)

+ W−(α1, λ)} +
∣∣Cλ,δ1(q)

∣∣2
G

(+)
λδ2

(ω̄123){W+(λ, α1) − W−(α1, λ) − W−(λ, γ1)

+ W−(γ1, λ)} − ∣∣Cλ1,δ1(q)
∣∣2

G
(−)
λδ2

(ω̄123){W+(α1, λ) − W−(λ, α1)

−W+(γ1, λ) + W−(λ, γ1)}
]
, (6.22)



(24)
β1δ1δ2

(ω̄123)(fδ2 − fβ1)

=
∑

q

∑
λ

[∣∣Cδ2,λ(q)
∣∣2

G
(+)
β1λ

(ω̄1){W+(β1, λ) − W−(λ, β1)}

− ∣∣Cδ2,λ(q)
∣∣2

G
(−)
β1λ

(ω̄1){W+(λ, β1) − W−(β1, λ)}
+

∣∣Cλ,δ1(q)
∣∣2

G
(+)
λδ2

(ω̄123){W+(λ, γ1) − W−(γ1, λ) − W+(λ, β1) + W−(β1, λ)}
− ∣∣Cλ1,δ1(q)

∣∣2
G

(−)
λδ2

(ω̄123){W+(γ1, λ) − W−(λ, γ1) − W+(β1, λ) + W−(λ, β1)}
]
,

(6.23)

where we have used the following relations:

Lva
+
αaβ =

∑
q,λ

(
bq + b+

−q

){
Cλ,α(q)a+

λaβ − Cβ,λ(q)a+
αaλ

}
,

Ldb
±
q a+

αaβ = (Eα − Eβ ± h̄ωq)b
±
q a+

αaβ,

Lda
+
αaβa+

γ aδ = (Eα + Eγ − Eβ − Eδ)a
+
αaβa+

γ aδ,

Ldb
+
q1

bq2a
+
αaβ = (Eα − Eβ + h̄ωq1 − h̄ωq2)b

+
q1

bq2a
+
αaβ.

In equations (6.20)–(6.23), the solutions near the resonance points h̄ω123 ≈ Eδ1δ2 ,
h̄ω̄12 ≈ Eβ2β1 + Eγ2γ1 and h̄ω̄1 ≈ Eγ2γ1 were considered, and we have ignored the terms
including Cαα(q) and (h̄ω ± h̄ωq)

−1 by the same reason as in equations (5.7) and (5.8). Note
that the result given in [23] has the same form as the present, but does not include the terms
corresponding to equations (6.20)–(6.23). This suggests that the present result provides a
more specific and significant interpretation of the phonon emissions and absorptions in all
electron transition processes.

7. Concluding remarks

The linear and nonlinear optical conductivity tensors for a system of electrons interacting
with phonons were derived using the reduction identity and the state-dependent projection

9
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technique introduced by the authors. The linewidth terms appearing in the conductivity
contain the electron and phonon distribution functions more phenomenologically. Therefore,
all possible electron transitions, as well as phonon emission and absorption, can be explained
properly.

As far as we know, there is no explicit similarity between the present projection technique
and the conventional diagram method. The term-by-term manipulations are different in the two
methods, in general. Note that the method used here is different from the standard perturbation
technique usually utilized in the standard diagram method. However, the two methods are sure
to lead to same acceptable results if correct manipulations are made. We should remember
the old saying ‘All roads lead to Rome’. However, we expect that the present technique is
simpler and requires less amount of calculation in dealing with the problem chosen in the
present paper.

The difference between the present theory and the previous one [33] lies in the use of
different projection operators. The present result is more general than the previous one. The
higher order terms of the nonlinear conductivity can be obtained in a similar manner using
higher order terms in equation (2.5) and (3.7) with the method used in this paper. Although
the theory for an electron–phonon system was formulated, electron–impurity scattering on
damping can also be included in this theory. It is expected that the result can be applied to
nonlinear optical phenomena such as the sum-frequency generation [37] and second-harmonic
generation [38, 39]. All of these will be studied in the future.

Appendix A. Derivation of the second-order reduction identity

Using [H, ρ(H)] = 0 and TR(ABC) = TR(BCA), the following are obtained:

TR{ρ[[[LX,A], B], C]} = TR{ρ[[[HX − XH,A], B], C]}
= TR{ρ(XABCH − CHXAB − BHXAC + CBHXA

− AHXBC + CAHXB + BAHXC − CBAHX)}
+ TR{ρ(−XHABC + CXHAB + BXHAC − CBXHA

+ AXHBC − CAXHB − BAXHC + HCBAX)} (A.1)

and

TR{ρ[[[X,LA], B], C]} + TR{ρ[[[X,A], LB], C]} + TR{ρ[[[X,A], B], LC]}
= TR{ρ[[[X,HA − AH ], B], C]} + TR{ρ[[[X,A],HB − BH ], C]}

+ TR{ρ[[[X,A], B],HC − CH ]}
= TR{ρ(XHABC − CXHAB − BXHAC + CBXHA − CBHAX)}

+ TR{ρ(AHXBC − CAHXB − BAHXC + CBAHX)}
+ TR{ρ(−AXHBC + CAXHB)} + TR{ρ(BHXAC)}
+ TR{ρ(BAXHC − HCBAX)} + TR{ρ(−XABCH + CHXAB)}. (A.2)

So, we have derived the second-order reduction identity, i.e. (A.1) = −(A.2). By similar
procedures, the higher order terms can be derived.

Appendix B. Derivation of equation (6.12)

Applying equation (4.6) to (h̄ω̄12 − Leq)
−1 in equation (6.10) with A ≡ h̄ω̄12 and B ≡ Leq

gives

10
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D2(ω̄12)h̄ω̄12 = TR

{
ρ
[
K(ω̄1)

[[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
+ TR

{
ρ
[
K(ω̄1)

[
LeqK(ω̄12)

[
Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]}
≡ D21(ω̄1) + D22(ω̄12). (B.1)

D21(ω̄1) and D22(ω̄12) are calculated by applying the zeroth- and first-order reduction identity,
respectively, as

D21(ω̄1) = −V21
/(

h̄ω̄1 + Eγ1γ2

)
(B.2)

D22(ω̄12) = −(
Eβ1β2 + Eγ1γ2

)
D2(ω̄12) − V22 − V23, (B.3)

in the second-order approximation of Lv . Therefore, inserting equations (B.2) and (B.3) into
equation (B.1), we obtain

D2(ω̄12) = −V21
/(

h̄ω̄1 + Eγ1γ2

) − V22 − V23

h̄ω̄12 + Eβ1β2 + Eγ1γ2

. (B.4)

E2(ω̄123) given in equation (6.11) is calculated by applying the second-order reduction
identity as

E2(ω̄123) = −V24 − V25 − V26 (B.5)

since TR

{
ρ
[
K(ω̄1)

[
K(ω̄12)[Q2K(ω̄123)Lva

+
δ1
aδ2 , a

+
α1

aα2

]
, a+

β1
aβ2

]
, a+

γ1
aγ2

]} = 0. Finally,
inserting equations (B.4) and (B.5) into equation (6.9), equation (6.12) is obtained.
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